Placeholder Content Image

Second Bee Gees member dies within four days

<p>Drummer Byron Dennis, who played a pivotal role in the success of The Bee Gees, has died just days after one of the original band members also <a href="https://oversixty.com.au/health/caring/original-bee-gees-star-passes-away-aged-78" target="_blank" rel="noopener">passed away</a>. </p> <p>Touring drummer Dennis Bryon died aged 76 in Nashville on November 14th, just four days before original Bee Gees drummer Colin “Smiley” Petersen.</p> <p>The news of Bryon’s death was confirmed by his former bandmate, Blue Weaver, who performed alongside him in another band before he joined the Bee Gees.</p> <p>“I am lost for words at the moment. Dennis has passed away,” Weaver wrote in a heartfelt social media post.</p> <p>“Dennis has been my friend since we were in our first band together aged 15. His great drumming will always Stay Alive.”</p> <p>Bryon was the group's drummer between 1973 and 1981, and played on some of the Bee Gees’ most iconic disco hits, including <em>Stayin’ Alive</em> and <em>Night Fever</em>.</p> <p>Just days before Dennis's tragic death, the Bee Gees original drummer Colin ‘Smiley’ Petersen, as the band confirmed the news of his passing with a post on social media. </p> <p>“It is with a heavy heart we announce the passing of our dear friend Colin ‘Smiley’ Petersen,” the post read.</p> <p>“He enriched our lives and bound our group with love, care and respect."</p> <p>“Not sure how we can go on without his glowing smile and deep friendship. We love you Col. Rest in Peace.”</p> <p><em>Image credits: Mediapunch/Shutterstock Editorial </em></p> <p class="css-1n6q21n-StyledParagraph e4e0a020" style="box-sizing: border-box; overflow-wrap: break-word; word-break: break-word; margin: 0px 0px 1.125rem; line-height: 25px; font-size: 1.125rem; font-family: HeyWow, Montserrat, 'Helvetica Neue', Helvetica, Arial, sans-serif; caret-color: #292a33; color: #292a33;"> </p>

Caring

Placeholder Content Image

How to rewire your brain to feel good on Monday

<div class="theconversation-article-body"> <p><em><a href="https://theconversation.com/profiles/cristina-r-reschke-1413051">Cristina R. Reschke</a>, <a href="https://theconversation.com/institutions/rcsi-university-of-medicine-and-health-sciences-788">RCSI University of Medicine and Health Sciences</a> and <a href="https://theconversation.com/profiles/jolanta-burke-315263">Jolanta Burke</a>, <a href="https://theconversation.com/institutions/rcsi-university-of-medicine-and-health-sciences-788">RCSI University of Medicine and Health Sciences</a></em></p> <p>If you hate Mondays, you’re most certainly in good company. After a couple of days off, many of us have difficulty settling back into our routines and work duties. You may even have dread and anxiety that seeps into the weekend in the form of “<a href="https://theconversation.com/three-ways-to-tackle-the-sunday-scaries-the-anxiety-and-dread-many-people-feel-at-the-end-of-the-weekend-187313">Sunday scaries</a>”.</p> <p>You can’t always change your schedule or obligations to make Mondays more appealing, but you may be able to “reprogram” your brain to think about the week differently.</p> <p>Our brains love predictability and routine. Research has shown that lack of routine is associated with <a href="https://journals.sagepub.com/doi/full/10.1177/0003122418823184">decline in wellbeing and psychological distress</a>. Even though the weekend heralds a leisurely and pleasant time, our brain works hard to adjust to this sudden change to a routine.</p> <p>The good news is that the brain does not need to make too much effort when adjusting to the weekend’s freedom and lack of routine. However, it’s a different story when coming back to the less pleasant activities, such as a to-do list on Monday morning.</p> <p>One way to adjust to post-weekend change is introducing routines that last the whole week and have the power to make our lives <a href="https://journals.sagepub.com/doi/full/10.1177/0146167218795133">more meaningful</a>. These may include <a href="https://portal.research.lu.se/en/publications/routines-made-and-unmade">watching your favourite TV programme, gardening</a> or going <a href="https://pubmed.ncbi.nlm.nih.gov/22976286/">to the gym</a>. It is helpful to do these things at the same time every day.</p> <p>Routines improve our <a href="https://pubmed.ncbi.nlm.nih.gov/16448317/">sense of coherence</a>, a process that allows us to make sense of the jigsaw of life events. When we have an established routine, be it the routine of working five days and taking two days off or engaging in a set of actions every day, our lives become <a href="https://journals.sagepub.com/doi/full/10.1177/0146167218795133">more meaningful</a>.</p> <p>Another important routine to establish is your sleep routine. <a href="https://www.nature.com/articles/s41746-021-00400-z">Research shows</a> that keeping consistent sleep time may be as important for enjoying Mondays as how long your sleep lasts or its quality.</p> <p>Changes in sleep patterns during weekends trigger <a href="https://www.mdpi.com/2072-6643/13/12/4543">social jetlag</a>. For instance, sleeping in later than usual and for longer on free days may trigger a discrepancy between your body clock and socially-imposed responsibilities. This is linked to higher stress levels on Monday morning.</p> <p>Try to keep a set time for going to bed and waking up, avoid naps. You might also want to create a 30 minute “wind-down” routine before sleep, by turning off or putting away your digital devices and practising relaxation techniques.</p> <h2>Hacking your hormones</h2> <p>Hormones can also play a role in how we feel about Mondays. For instance, cortisol is a very important multifunction hormone. It helps our bodies to control our metabolism, regulate our sleep-wake cycle and our response to stress, among other things. It is usually released about an hour before we wake up (it helps us feel awake) and then its levels lower until the next morning, unless we’re under stress.</p> <p>Under acute stress, our bodies release not only cortisol, but also adrenaline in preparation for fight or flight. This is when the heart beats fast, we get sweaty palms and may react impulsively. This is our amygdala (a small almond-shaped area in the base of our brains) hijacking our brains. It creates a super fast emotional response to stress even before our brains can process and think whether it was needed.</p> <p>But as soon we can think – activating the brain’s prefrontal cortex, the area for our reason and executive thinking – this response will be mitigated, if there is no real threat. It is a constant battle between our emotions and reason. This might wake us up in the middle of the night when we’re too stressed or anxious.</p> <p>It shouldn’t be surprising then that cortisol levels, measured in saliva samples of full-time working individuals, tend to be higher on Mondays and Tuesdays, with the lowest levels reported on <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824866/">Sundays</a>.</p> <p>As a stress hormone, cortisol fluctuates daily, but not consistently. On weekdays, as soon as we wake up, <a href="https://psycnet.apa.org/record/2007-18151-008">cortisol levels soar</a> and variations tend to be higher than on <a href="https://pubmed.ncbi.nlm.nih.gov/11324714/">weekends</a>.</p> <p>To combat this, we need to trick the amygdala by training the brain to only recognise actual threats. In other words, we need to activate our prefrontal cortex as fast as possible.</p> <p>One of the best ways to achieve this and lower overall stress is through relaxation activities, especially on Mondays. One possibility is mindfulness, which is associated with a <a href="https://pubmed.ncbi.nlm.nih.gov/23724462/">reduction in cortisol</a>. <a href="https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00722/full">Spending time in nature</a> is another method – going outside first thing on Monday or even during your lunch hour can make a significant difference to how you perceive the beginning of the week.</p> <p>Give yourself time before checking your phone, social media and the news. It’s good to wait for cortisol peak to decrease naturally, which happens approximately one hour after waking up, before you expose yourself to external stressors.</p> <p>By following these simple tips, you can train your brain to believe that the weekdays can be (nearly) as good as the weekend.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/199236/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><a href="https://theconversation.com/profiles/cristina-r-reschke-1413051"><em>Cristina R. Reschke</em></a><em>, Lecturer in the School of Pharmacy and Biomolecular Sciences &amp; Funded Investigator in the FutureNeuro Research Centre, <a href="https://theconversation.com/institutions/rcsi-university-of-medicine-and-health-sciences-788">RCSI University of Medicine and Health Sciences</a> and <a href="https://theconversation.com/profiles/jolanta-burke-315263">Jolanta Burke</a>, Senior Lecturer, Centre for Positive Health Sciences, <a href="https://theconversation.com/institutions/rcsi-university-of-medicine-and-health-sciences-788">RCSI University of Medicine and Health Sciences</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/how-to-rewire-your-brain-to-feel-good-on-mondays-199236">original article</a>.</em></p> </div>

Mind

Placeholder Content Image

Breakthrough study finds genetic link to Parkinson's and ADHD

<p>A major scientific study has found a surprising link between the genes that control brain size and the risk of brain-related conditions. </p> <p>A Queensland Institute of Medical Research Associate Professor Miguel Renteria led an international team of experts who scanned DNA data and MRI scans from 76,000 participants.</p> <p>“Genetic variants associated with larger brain volumes in key brain regions also increase the risk of Parkinson’s disease, while variants linked to smaller brain volumes in key regions are associated with an increased risk of ADHD,” Renteria said. </p> <p>“It brings us closer to answering key questions about how genetics influence brain structure, and how we can potentially treat these conditions in future.”</p> <p>Parkinson’s Australia CEO Olivia Nassaris has celebrated the results of the study, saying the surprising results open the door to future treatment options for Parkinson’s, which currently has no cure or cause.</p> <p>“The more answers we have the closer we are to understanding this condition,” she said.</p> <p>Michael Wiseman, who has been living with Parkinson’s for eight years, said he is pleased more research is being done about the neurodegenerative condition.</p> <p>“I know it’s not going to benefit me in any way, as far as a cure or anything … I just hope they keep going, kicking some goals and finding results because it’s an insidious sort of thing, it’s a passenger I’ll have until I go to the grave.”</p> <p><em>Image credits: Shutterstock </em></p>

Caring

Placeholder Content Image

Retiring early can be bad for the brain

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/plamen-v-nikolov-1112610">Plamen V Nikolov</a>, <a href="https://theconversation.com/institutions/binghamton-university-state-university-of-new-york-2252">Binghamton University, State University of New York</a></em></p> <p><em>The <a href="https://theconversation.com/us/topics/research-brief-83231">Research Brief</a> is a short take about interesting academic work.</em></p> <h2>The big idea</h2> <p>People who retire early suffer from accelerated cognitive decline and may even encounter early onset of dementia, according to a I conducted with my doctoral student <a href="https://sites.google.com/binghamton.edu/alan-adelman/home">Alan Adelman</a>.</p> <p>To establish that finding, we examined the effects of a rural pension program China introduced in 2009 that provided people who participated with a stable income if they stopped working after the official retirement age of 60. We found that people who participated in the program and retired within one or two years experienced a cognitive decline equivalent to a drop in general intelligence of 1.7% relative to the general population. This drop is equivalent to about three IQ points and could make it harder for someone to <a href="https://doi.org/10.1017/S0033291700008412">adhere to a medication schedule</a> or <a href="https://doi.org/10.1111/j.1475-%205890.2007.00052.x">conduct financial planning</a>. The largest negative effect was in what is called “delayed recall,” which measures a person’s ability to remember something mentioned several minutes ago. Neurological research <a href="https://doi.org/10.1001/archneur.1991.00530150046016">links problems in this area to an early onset of dementia</a>.</p> <h2>Why it matters</h2> <p>Cognitive decline refers to when a person has trouble remembering, learning new things, concentrating or making decisions that affect their everyday life. Although some cognitive decline appears to be an inevitable byproduct of aging, faster decline can have profound adverse consequences on one’s life.</p> <p>Better understanding of the causes of this has powerful financial consequences. Cognitive skills – the mental processes of gathering and processing information to solve problems, adapt to situations and learn from experiences – are crucial for decision-making. They influence an individual’s ability to process information and <a href="https://www.jstor.org/stable/1818642">are connected to higher earnings</a> and a <a href="https://www.doi.org/10.1257/jep.25.1.159">better quality of life</a>.</p> <p>Retiring early and working less or not at all can generate large benefits, such as reduced stress, better diets and more sleep. But as we found, it also has unintended adverse effects, like fewer social activities and less time spent challenging the mind, that far outweighed the positives.</p> <p>While retirement schemes like the 401(k) and similar programs in other countries <a href="https://www.doi.org/10.1023/B:PUCH.0000035859.20258.e0">are typically introduced to ensure the welfare of aging adults</a>, our research suggests they need to be designed carefully to avoid unintended and significant adverse consequences. When people consider retirement, they should weigh the benefits with the significant downsides of a sudden lack of mental activity. A good way to ameliorate these effects is to stay engaged in social activities and continue to use your brains in the same way you did when you were working.</p> <p>In short, we show that if you rest, you rust.</p> <h2>What still isn’t known</h2> <p>Because we are using data and a program in China, the mechanisms of how retirement induces cognitive decline could be context-specific and may not necessarily apply to people in other countries. For example, cultural differences or other policies that can provide support to individuals in old age can buffer some of the negative effects that we see in rural China due to the increase in social isolation and reduced mental activities.</p> <p>Therefore, we can not definitively say that the findings will extrapolate to other countries. We are looking for data from other countries’ retirement programs, such as India’s, to see if the effects are similar or how they are different.</p> <h2>How I do my research</h2> <p>A big focus of the <a href="https://scholar.harvard.edu/pnikolov/my-research-group-1">economics research lab</a> I run is to <a href="http://www.nber.org/%7Enikolovp/research.html">better understand</a> the causes and consequences of changes in what economists call <a href="https://www.britannica.com/topic/human-capital">“human capital”</a> – especially cognitive skills – in the context of developing countries.</p> <p>Our lab’s mission is to generate research to inform economic policies and empower individuals in low-income countries to rise out of poverty. One of the main ways we do this is through the use of randomized controlled trials to measure the impact of a particular intervention, such as retiring early or access to microcredit, on education outcomes, productivity and health decisions.<!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><a href="https://theconversation.com/profiles/plamen-v-nikolov-1112610"><em>Plamen V Nikolov</em></a><em>, Assistant Professor of Economics, <a href="https://theconversation.com/institutions/binghamton-university-state-university-of-new-york-2252">Binghamton University, State University of New York</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/retiring-early-can-be-bad-for-the-brain-145603">original article</a>.</em></p> </div>

Mind

Placeholder Content Image

Trump escapes second assassination attempt

<p>Former president Donald Trump has escaped a second assassination attempt while playing golf at his private club in Florida. </p> <p>According to local authorities, a Secret Service agent was one hole ahead of Trump when he spotted a rifle barrel sticking out of the fence, which was later found to be an AK-47 with a scope, at the Trump International Golf Club, West Palm Beach on Sunday. </p> <p>The Secret Service opened fire on the suspect, who fled the scene only to later be pulled over on the highway and taken into custody. </p> <p>The FBI said Trump had been the subject of “an apparent assassination attempt” at his Florida golf club.</p> <p>Officials at a media briefing after the incident said a witness took a photo of the suspect's car as he fled the scene, helping authorities track him down. </p> <p>The Secret Service officer who was on the course and spotted the weapon was praised for doing a “fantastic job”.</p> <p>“What they do is they have an agent that jumps one hole ahead of time towards where the [former] president was at, and he was able to spot this rifle barrel sticking out of the fence and immediately engaged that individual, at which time the individual took off,” the Palm Beach County Sheriff Ric Bradshaw said.</p> <p>“In the bushes where this guy was is an AK-47 style rifle with a scope, two backpacks – which were hung on the fence that had ceramic tile in them and a GoPro, which he was going to take pictures with.” </p> <p>Trump posted an update on his social media platform to assure his supporters he was unharmed in the attempted assassination. </p> <p>“There were gunshots in my vicinity, but before rumours start spiralling out of control, I wanted you to hear this first: I AM SAFE AND WELL!” he wrote.</p> <p>“Nothing will slow me down. I will NEVER SURRENDER! I will always love you for supporting me.”</p> <p>The attempted shooting comes just months after Trump was injured during another assassination attempt in July while speaking at a rally in Pennsylvania. </p> <p><em>Image credits: Shutterstock/CRISTOBAL HERRERA-ULASHKEVICH/EPA-EFE/Shutterstock Editorial</em></p>

News

Placeholder Content Image

The best exercises to boost your brain health after 60

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/neva-beraud-peigne-1418228">Neva Béraud-Peigné</a>, <a href="https://theconversation.com/institutions/universite-paris-saclay-2174">Université Paris-Saclay</a>; <a href="https://theconversation.com/profiles/alexandra-perrot-1531671">Alexandra Perrot</a>, <a href="https://theconversation.com/institutions/universite-paris-saclay-2174">Université Paris-Saclay</a>, and <a href="https://theconversation.com/profiles/pauline-maillot-1167901">Pauline Maillot</a>, <a href="https://theconversation.com/institutions/universite-paris-cite-4263">Université Paris Cité</a></em></p> <p>Have you ever thought about why we have a <a href="https://theconversation.com/fr/topics/cerveau-21903">brain</a>? The obvious answer might be “to think”. But scientist Daniel Wolpert came up with a completely different explanation at the <a href="https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains">2011 meeting of the <em>Society for Neuroscience</em></a>:</p> <blockquote> <p>“We have a brain for one reason and one reason only: to produce adaptable and complex movements”</p> </blockquote> <h2>Use your brain to stay efficient</h2> <p>The brain, in other words, is the orchestra conductor which orders the body’s movements. We call the faculties that allow us to interact with our environment <em>cognitive abilities</em>. These include concentrating, learning, reasoning, adapting and communicating with others. Every one of them is key in enabling us to go about our routine and help us maintain a good lifestyle.</p> <p>So, how can we best take care of our brains so that they can stay as efficient as long as possible? Contrary to popular belief, the brain does not deteriorate continuously with age. Instead, it only sees the number of its brain cells drop and connections deteriorate <a href="https://www.bmj.com/content/344/bmj.d7622">from the age of 45 onwards</a> as part of a normal ageing process. But cerebral plasticity, although reduced, is present until the end of life. Each individual will build up a cognitive reserve throughout their lives.</p> <p>The more positive, rich and stimulating the lifestyle, the more powerful and effective the reserve. In other words, it’s possible to moderate the effects of age on cognition.</p> <h2>The benefits of physical activity on cognitive capacity after 60</h2> <p>In fact, much research shows indeed that physical activity improves cognitive capacity, even after the age of 60. From increased memory, better reactivity to greater planning skills, the <a href="https://www.annualreviews.org/content/journals/10.1146/annurev-clinpsy-072720-014213">benefits are endless</a>.</p> <p>Despite this, few older folks engage in <a href="https://theconversation.com/fr/topics/activite-physique-adaptee-apa-146288">physical education</a> adapted to their bodies on a regular basis. Poor motivation and access to these exercises are some of the factors don’t help.</p> <p>With that in mind, many carers might be tempted to offer older people monotonous, routine activities because of their diminishing physical, cognitive and sensory abilities. And indeed, for a long time, the range of sports on offer and research in this field revolved around the same triptych: gentle gymnastics, walking and yoga. However, you’ll reap more benefits by <a href="https://www-sciencedirect-com.ezproxy.u-paris.fr/science/article/abs/pii/B9780444633279000175">combining different training methods</a>.</p> <h2>Three ingredients to train the brains of senior citizens</h2> <p>Researchers are currently attempting to crack the winning formula that would flex older people’s cognitive, as well as physical muscles. It’ll consist of three main ingredients:</p> <p><em>First ingredient: complex physical and motor stimulation of at least moderate intensity.</em></p> <p>Moderate cardio workouts not only improve cardiorespiratory health but also make the brain more <a href="https://www.nature.com/articles/22682">efficient</a>. Overall improved cardiofitness, in turn, allows the brain to receive more oxygen and even to generate <a href="https://www.pnas.org/doi/full/10.1073/pnas.1015950108">new neurons in the hippocampus</a>, where memory is lodged.</p> <p>It therefore makes sense for programmes designed to boost cognitive function to include cardio. But it is also <a href="https://journals.sagepub.com/doi/abs/10.1111/1467-9280.t01-1-01430">necessary to combine them with muscle-strengthening, flexibility and balance exercises to achieve greater benefits</a>. In addition, the <a href="https://www.sciencedirect.com/science/article/abs/pii/S0149763413001012">researchers</a> emphasise the importance of adding situations requiring complex motor skills and coordination, as these would have a significant impact on cognitive functions (e.g. memory, attention and mental flexibility), particularly in the elderly.</p> <p><em>Second ingredient: fire up those brain cells during exercises</em></p> <p>Incorporating cognitive stimulation, such as remembering information for a period of time and executing it, anticipating actions, or planning a move, is another winning strategy. When cognitive stimulation is combined with physical activity, it can produce <a href="https://www.tandfonline.com/doi/abs/10.1080/13825585.2011.645010">synergistic effects</a> and, as a result, be more effective on cognitive functions.</p> <p>_Third ingredient: group activities that lead to social interaction. _</p> <p>Working out as part of a group has been shown to help us <a href="https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001756">persevere through it</a>.</p> <p>What this winning formula could look like in practice is still being researched. At present, there are two broad types of exercises that have caught our attention that could help older people stay sharp.</p> <h2>Opting for cooperative and oppositional team sports</h2> <p>Team sports offer much more than just physical exercise sessions. What’s particularly great about them is that they don’t only challenge cardiorespiratory balance, but tap into the whole body’s physical skill-set.</p> <p>Take basketball or handball, for example: to move around the court, dribble or score, balance, coordination and flexibility are essential. Muscular strength is also required for passing, recovering the ball and moving around. These team sports can be suitable even after the age of 60, provided they are properly supervised.</p> <p>From a cognitive point of view, these activities create situations that are always new, rich and stimulating. We call this double combination of stimuli <em><a href="https://www.tandfonline.com/doi/abs/10.1080/13825585.2011.645010">simultaneous training</a></em>. A number of researchers have highlighted the importance of this cognitive involvement in team sports and encourage their practice, particularly among the elderly.</p> <p>Recent studies, such as <a href="https://linkinghub.elsevier.com/retrieve/pii/S162748302100129X">the one carried out in 2022</a> by French researchers, have shown that participation in team sports improves short-term visuospatial memory (which enables people, for example, to remember the location of certain objects for a limited period of time) and planning skills in the elderly.</p> <h2>Get your body moving with exergames</h2> <p>Another promising avenue are <em>exergames</em> – video games that require players to move around to play. Named after the contraction of “exercise” and “games”, they grew popular in the 2000s thanks to Nintendo’s Wii and Switch and Microsoft’s Kinect.</p> <p>Exogames have been thought out to exercise different fitness skills, such as balance, endurance, strength, and coordination, while simultaneously stimulating cognitive functions. Among older people, <a href="https://psycnet.apa.org/record/2011-27707-001">several research studies</a> show that this type of training helps to improve many physical and cognitive abilities.</p> <p>In 2020, a new generation of exergames emerged, making use of interactive walls to create an even more immersive gaming experience, such as Neo Xperiences’ <em>Neo-One</em>, Sphery’s <em>ExerCube</em> and Lü’s <em>Aire interactive</em>. In these games combining real and virtual worlds, physical objects (such as balls) and digital objects coexist and interact in real time.</p> <p>A <a href="https://link.springer.com/article/10.1007/s11357-023-00952-w">recent study</a> compared an exergame programme assisted by an immersive wall with a walking and muscle-strengthening programme. Its results suggest that this new generation of exergames may be more effective on cognitive abilities than traditional training.</p> <p>Combining physical and cognitive exercises offers the best chance to keep one’s brain health while keeping fit. This is essential for an active and fulfilling life, whatever your age.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/237162/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/neva-beraud-peigne-1418228">Neva Béraud-Peigné</a>, Doctorante en sciences du mouvement, <a href="https://theconversation.com/institutions/universite-paris-saclay-2174">Université Paris-Saclay</a>; <a href="https://theconversation.com/profiles/alexandra-perrot-1531671">Alexandra Perrot</a>, Maitre de conférences HDR, <a href="https://theconversation.com/institutions/universite-paris-saclay-2174">Université Paris-Saclay</a>, and <a href="https://theconversation.com/profiles/pauline-maillot-1167901">Pauline Maillot</a>, Maître de conférences en STAPS, <a href="https://theconversation.com/institutions/universite-paris-cite-4263">Université Paris Cité</a></em></p> <p><em>Image credits: Shutterstock </em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/the-best-exercises-to-boost-your-brain-health-after-60-237162">original article</a>.</em></p> </div>

Body

Placeholder Content Image

Do mobile phones cause brain cancer? Science makes definitive call

<p>The question of whether mobile phones - specifically the electromagnetic radiation or radio waves emitted by these devices - cause cancer has been debated and researched for a long time, and now scientists have made a definitive call. </p> <p>A new comprehensive review commissioned by the World Health Organization has found that mobile phones are NOT linked to brain and head cancers. </p> <p>The systematic review, led by the Australian Radiation Protection and Nuclear Safety Agency (Arpansa), examined over 5,000 studies, which included 63 observational studies on humans published between 1994 and 2022 and is "the most comprehensive review to date" according to review lead author, associate prof Ken Karipidis. </p> <p>“We concluded the evidence does not show a link between mobile phones and brain cancer or other head and neck cancers," he said. </p> <p>The review, which was published on Wednesday, focused on cancers of the nervous system, salivary gland and brain tumours. </p> <p>They found no overall association between mobile phone use and cancer, even if people have used it for a long time (over 10 years) or spend a lot of time on their phones. </p> <p>“I’m quite confident with our conclusion. And what makes us quite confident is … even though mobile phone use has skyrocketed, brain tumour rates have remained stable,” Karipidis continued. </p> <p>Despite emitting electromagnetic radiation, also known as radio waves, the exposure is relatively low. </p> <p>Karipidis said people hear the word radiation and assume it is similar to nuclear radiation, “and because we use a mobile phone close to the head when we’re making calls, there is a lot of concern.”</p> <p>He clarified that “radiation is basically energy that travels from one point to another. There are many different types, for example, ultraviolet radiation from the sun." </p> <p>“We’re always exposed to low-level radio waves in the everyday environment.”</p> <p>While exposure from mobile phones is still low, it is much higher than exposure from any other wireless technology sources since they are used close to the head, Karipidis said. </p> <p>The association between mobile phones and cancers came about from early studies comparing differences between those with and without brain tumours and asking about their exposure history. </p> <p>According to Karipidis, who is also the vice-chair of the International Commission on Non-Ionizing Radiation Protection, the results from these kind of studies tend to be biased, as the group with the tumour tend to overreport their exposure. </p> <p>Based on these early studies WHO’s International Agency for Research on Cancer (IARC) designated radio-frequency fields like those from mobile phones as a possible cancer risk, but Karipidis said "this classification doesn’t mean all that much”.</p> <p>This is because the IARC has different classifications of cancer risk, with some substances classified as  a “definite” carcinogen (such as smoking), and others as “probable” or “possible” carcinogens.</p> <p>Tim Driscoll, a professor at the University of Sydney and chair of the Australian Cancer Council’s occupational and environmental cancers committee, also backed the systematic review. </p> <p>“I think people should feel reassured by this study … but it’s worthwhile just remembering that the studies aren’t perfect, but the weight of evidence certainly is that mobile phones should be considered safe to use in terms of any concerns about increased risk of cancer,” Driscoll said.</p> <p><em>Images: Shutterstock</em></p> <p> </p>

Body

Placeholder Content Image

Can a 10-year-old be responsible for a crime? Here’s what brain science tells us

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/susan-m-sawyer-109573">Susan M. Sawyer</a>, <a href="https://theconversation.com/institutions/the-university-of-melbourne-722">The University of Melbourne</a> and <a href="https://theconversation.com/profiles/nandi-vijayakumar-1644262">Nandi Vijayakumar</a>, <a href="https://theconversation.com/institutions/deakin-university-757"><em>Deakin University</em></a></em></p> <p>The age a child can be arrested, charged and jailed in Australia is back in the spotlight.</p> <p>Last year, the Northern Territory became the first jurisdiction to raise the age of criminal responsibility from ten to 12. Now its new, tough-on-crime government has pledged to <a href="https://www.sbs.com.au/nitv/article/incoming-chief-minister-says-age-of-criminal-responsibility-to-be-lowered-to-10-years-old/a1xm9jy9c">return it to ten</a>. It comes after Victoria <a href="https://www.abc.net.au/news/2024-08-13/victoria-youth-justice-reform-criminal-age/104217160">walked back</a> its earlier commitment to raise the age to 14, settling instead on 12.</p> <p>But the United Nations Committee on the Rights of the Child says 14 should be the absolute <a href="https://www.ohchr.org/en/documents/general-comments-and-recommendations/general-comment-no-24-2019-childrens-rights-child">minimum</a>. It raised this age from its earlier recommendation (in 2007) of 12, citing a decade of new research into child and adolescent development.</p> <p>So what does the science say? What happens to the brain between ten and 14? And how much can those under 14 understand the consequences of their actions?</p> <h2>Who is an adolescent?</h2> <p>Our research shows adolescence is a <a href="https://pubmed.ncbi.nlm.nih.gov/30169257/">critical period</a> for development. It’s the time children’s experiences and explorations shape how they develop cognitive skills (including critical thinking and decision making), as well as social and emotional skills (including moral reasoning).</p> <p>Adolescence also lasts longer than we tend to think. Important brain development begins during late childhood, around eight to nine years. Intense changes then follow during early adolescence (ages ten to 14). But these changes continue well into the twenties, and full cognitive and emotional maturity is not usually reached until around age 24.</p> <p>However, everyone’s brain matures at a different rate. That means there is no definitive age we can say humans reach “adult” levels of cognitive maturity. What we do know is the period of early adolescence is critical.</p> <h2>What does puberty do to the brain?</h2> <p>Puberty is a defining feature of early adolescence. Most of us are familiar with the changes that occur to the body and reproductive systems. But the increase in puberty hormones, such as testosterone and oestrogen, also trigger changes to the brain. These hormones <a href="https://www.sciencedirect.com/science/article/abs/pii/S0306453017313252?via%3Dihub">increase most sharply</a> between ten and 15 years of age, although gradual changes continue into the early twenties.</p> <p>Puberty hormones change the structures in the brain which process emotions, including the amygdala (which encodes fear and stress) and ventral striatum (involved in reward and motivation).</p> <p>This makes adolescents particularly reactive to emotional rewards and threats. <a href="https://doi.org/10.1016/j.cortex.2019.04.024">Our research</a> has shown the brain’s sensitivity to emotions increases throughout early adolescence until around 14 or 15 years old.</p> <p>At the same time, changes in puberty have <a href="http://dx.doi.org/10.1037/pspp0000172">been linked</a> to increased sensation seeking and impulsive behaviours during early adolescence.</p> <p>This context is crucial when we discuss the behaviour of children in the ten to 14 age range. The way their brains change during this period makes them more sensitive and responsive to emotions, and more likely to be seeking experiences that are new and intense.</p> <h2>How do adolescents make decisions?</h2> <p>The emotional context of puberty influences how younger adolescents make decisions and understand their consequences.</p> <p>Decision making relies on several basic cognitive functions, including the brain’s flexibility, memory and ability to control impulses.</p> <p>These cognitive abilities – which together help us consider the consequences of our actions – undergo some of the <a href="https://doi.org/10.1523/JNEUROSCI.1741-13.2013">steepest development</a> between ages ten and 14. By age 15, the ability to make complex decisions has usually <a href="https://doi.org/10.1037/lhb0000315">reached adult maturity</a>.</p> <p>But adolescents at this age remain highly susceptible to emotions. So while their brain may be equipped to make a complex decision, their ability to think through the consequences, weighing up costs and benefits, can be clouded by emotional situations.</p> <p>For example, <a href="https://doi.org/10.1111/cdev.12085">research has shown</a> 13-14 year-olds were more distracted from completing a task and less able to control their behaviour when they viewed images that made them feel negative emotions.</p> <p>The social world of teenagers also has a significant impact on how they make decisions – especially in early adolescence. One study found that while older adolescents (aged 15-18) are more influenced by what adults think when weighing up risk, adolescents aged 12-14 <a href="https://journals.sagepub.com/doi/full/10.1177/0956797615569578">look to other teenagers</a>.</p> <p>Experiments <a href="https://doi.org/10.1177/0272431616648453">have also shown</a> adolescents aged 12-15 make riskier decisions when they are with peers than by themselves. Their brain responses also suggest they experience a greater sense of reward in taking those risks <a href="https://doi.org/10.1093/scan/nsy071">with peers</a>.</p> <h2>How do teens understand the consequences of their actions?</h2> <p>The concept of <a href="https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/rp2122/Quick_Guides/MinimumAgeCriminalResponsibility">criminal responsibility</a> is based on whether a person is able to understand their action and know whether it is wrong.</p> <p>Moral reasoning – how people think about right and wrong – depends on the ability to understand another person’s mental state and adopt their perspective. These skills are in development <a href="https://doi.org/10.1016/j.biopsych.2020.09.012">across adolescence</a>.</p> <p>Research suggests it may take more effort for adolescent brains to process <a href="https://doi.org/10.1162/jocn.2009.21121">“social” emotions</a> such as guilt and embarrassment, compared to adults. This is similar when they make <a href="https://doi.org/10.1080/17470919.2014.933714">moral judgements</a>. This evidence suggests teenage brains may have to work harder when considering other people’s intentions and desires.</p> <p>Young adolescents have the cognitive ability to appreciate they made a bad decision, but it is more mentally demanding. And social rewards, emotions and the chance to experience something new all have a strong bearing on their decisions and actions in the moment — possibly more than whether it is right or wrong.</p> <h2>Early adolescence is critical for the brain</h2> <p>There are also a number of reasons adolescent brains may develop differently. This includes various forms of neurodisability such as acquired brain injury, fetal alcohol spectrum disorder, attention-deficit hyperactivity disorder (ADHD) and intellectual disability, as well as exposure to trauma.</p> <p>Teenagers with neurodevelopmental disorders will likely cope differently with decision making, social pressure, impulse control and risk assessment, and face <a href="https://www.mcri.edu.au/images/research/strategic-collaborations/Flagships/Neurodevelopment/Neurodevelopment_Flagship_Brochure.pdf">extra difficulties</a>. Across the world, they are <a href="https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(19)30217-8/fulltext">disproportionately incarcerated</a>.</p> <p>In Australia, Indigenous children and adolescents are incarcerated <a href="https://www.indigenoushpf.gov.au/measures/2-11-contact-with-the-criminal-justice-system#:%7E:text=On%20an%20average%20day%20in%202021%E2%80%9322%2C%20there%20were%3A,AIHW%202023d%3A%20Table%20S76a">in greater numbers</a> than their non-Indigenous peers.</p> <p>Each child matures differently, and some face extra challenges. But for every person, the period between ten and 14 is critical for developing the cognitive, social and emotional skills they’ll carry through the rest of their life.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/237552/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/susan-m-sawyer-109573">Susan M. Sawyer</a>, Professor of Adolescent Health The University of Melbourne; Director, Royal Children's Hospital Centre for Adolescent Health, <a href="https://theconversation.com/institutions/the-university-of-melbourne-722">The University of Melbourne</a> and <a href="https://theconversation.com/profiles/nandi-vijayakumar-1644262">Nandi Vijayakumar</a>, Research Fellow, School of Psychology, <a href="https://theconversation.com/institutions/deakin-university-757">Deakin University</a></em></p> <p><em>Image credits: Shutterstock </em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/can-a-10-year-old-be-responsible-for-a-crime-heres-what-brain-science-tells-us-237552">original article</a>.</em></p> </div>

Mind

Placeholder Content Image

Second person dies during Legionnaires outbreak

<p>A man in his 60s has become the second person to die from Legionnaires amidst the outbreak in Victoria. </p> <p>The man became unwell on July 27th and was admitted to hospital, where he died on August 1st.</p> <p>His death comes just days after a woman in her 90s also died from the disease. </p> <p>Victoria's Chief Health Officer Clare Looker confirmed that the state is now grappling with 77 confirmed cases, including two in the past 24 hours and another seven suspected cases.</p> <p>Most people with the disease are over 40 years of age and are believed to have been exposed between July 5th and July 20th. </p> <p>Despite the worrying case number, Looker confirmed that authorities have seen a reduction in cases and believe the situation is stabilising. </p> <p>The source of the outbreak is being linked to a cooling tower in the Laverton North and Derrimut area of Melbourne, after more than 50 sites have been inspected. </p> <p>Authorities believe there is a high likelihood they have already tested and treated the source, while sharing that weather patterns could explain the extent of the outbreak. </p> <p>They have contacted another 1000 businesses across Melbourne, telling them to self-test and report to the Department of Health, Looker said.</p> <p>Legionnaires’ disease is caused by the legionella bacteria, which is found in natural bodies of water as well as spas, warm water systems, potting mix and artificial systems that use water for cooling.</p> <p>Symptoms usually include a chest infection, aches, headache, fever, cough and chills.</p> <p><em>Image credits: 7News</em></p>

Caring

Placeholder Content Image

What happens in my brain when I get a migraine? And what medications can I use to treat it?

<div class="theconversation-article-body"> <p><em><a href="https://theconversation.com/profiles/mark-slee-1343982">Mark Slee</a>, <a href="https://theconversation.com/institutions/flinders-university-972">Flinders University</a> and <a href="https://theconversation.com/profiles/anthony-khoo-1525617">Anthony Khoo</a>, <a href="https://theconversation.com/institutions/flinders-university-972">Flinders University</a></em></p> <p>Migraine is many things, but one thing it’s not is “just a headache”.</p> <p>“Migraine” <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1029040/">comes from</a> the Greek word “hemicrania”, referring to the common experience of migraine being predominantly one-sided.</p> <p>Some people experience an “aura” preceding the headache phase – usually a visual or sensory experience that evolves over five to 60 minutes. Auras can also involve other domains such as language, smell and limb function.</p> <p>Migraine is a disease with a <a href="https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(18)30322-3/fulltext">huge personal and societal impact</a>. Most people cannot function at their usual level during a migraine, and anticipation of the next attack can affect productivity, relationships and a person’s mental health.</p> <h2>What’s happening in my brain?</h2> <p>The biological basis of migraine is complex, and varies according to the phase of the migraine. Put simply:</p> <p>The earliest phase is called the <strong>prodrome</strong>. This is associated with activation of a part of the brain called the hypothalamus which is thought to contribute to many symptoms such as nausea, changes in appetite and blurred vision.</p> <figure class="align-center "><img src="https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=485&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=485&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=485&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=610&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=610&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/608985/original/file-20240723-17-rgqc7v.jpg?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=610&amp;fit=crop&amp;dpr=3 2262w" alt="" /><figcaption><span class="caption">The hypothalamus is shown here in red.</span> <span class="attribution"><a class="source" href="https://www.shutterstock.com/image-vector/brain-cross-section-showing-basal-ganglia-329843930">Blamb/Shutterstock</a></span></figcaption></figure> <p>Next is the <strong>aura phase</strong>, when a wave of neurochemical changes occur across the surface of the brain (the cortex) at a rate of 3–4 millimetres per minute. This explains how usually a person’s aura progresses over time. People often experience sensory disturbances such as flashes of light or tingling in their face or hands.</p> <p>In the <strong>headache phase</strong>, the trigeminal nerve system is activated. This gives sensation to one side of the face, head and upper neck, leading to release of proteins such as CGRP (calcitonin gene-related peptide). This causes inflammation and dilation of blood vessels, which is the basis for the severe throbbing pain associated with the headache.</p> <p>Finally, the <strong>postdromal phase</strong> occurs after the headache resolves and commonly involves changes in mood and energy.</p> <h2>What can you do about the acute attack?</h2> <p>A useful way to conceive of <a href="https://www.migraine.org.au/factsheets">migraine treatment</a> is to compare putting out campfires with bushfires. Medications are much more successful when applied at the earliest opportunity (the campfire). When the attack is fully evolved (into a bushfire), medications have a much more modest effect.</p> <p><iframe id="Pj1sC" class="tc-infographic-datawrapper" style="border: 0;" src="https://datawrapper.dwcdn.net/Pj1sC/" width="100%" height="400px" frameborder="0" scrolling="no"></iframe></p> <p><strong>Aspirin</strong></p> <p>For people with mild migraine, non-specific anti-inflammatory medications such as high-dose aspirin, or standard dose non-steroidal medications (NSAIDS) can be very helpful. Their effectiveness is often enhanced with the use of an anti-nausea medication.</p> <p><strong>Triptans</strong></p> <p>For moderate to severe attacks, the mainstay of treatment is a class of medications called “<a href="https://assets.nationbuilder.com/migraineaus/pages/595/attachments/original/1678146819/Factsheet_15_2023.pdf?1678146819">triptans</a>”. These act by reducing blood vessel dilation and reducing the release of inflammatory chemicals.</p> <p>Triptans vary by their route of administration (tablets, wafers, injections, nasal sprays) and by their time to onset and duration of action.</p> <p>The choice of a triptan depends on many factors including whether nausea and vomiting is prominent (consider a dissolving wafer or an injection) or patient tolerability (consider choosing one with a slower onset and offset of action).</p> <p>As triptans constrict blood vessels, they should be used with caution (or not used) in patients with known heart disease or previous stroke.</p> <p><strong>Gepants</strong></p> <p>Some medications that block or modulate the release of CGRP, which are used for migraine prevention (which we’ll discuss in more detail below), also have evidence of benefit in treating the acute attack. This class of medication is known as the “gepants”.</p> <p>Gepants come in the form of injectable proteins (monoclonal antibodies, used for migraine prevention) or as oral medication (for example, rimegepant) for the acute attack when a person has not responded adequately to previous trials of several triptans or is intolerant of them.</p> <p>They do not cause blood vessel constriction and can be used in patients with heart disease or previous stroke.</p> <p><strong>Ditans</strong></p> <p>Another class of medication, the “ditans” (for example, lasmiditan) have been approved overseas for the acute treatment of migraine. Ditans work through changing a form of serotonin receptor involved in the brain chemical changes associated with the acute attack.</p> <p>However, neither the gepants nor the ditans are available through the Pharmaceutical Benefits Scheme (PBS) for the acute attack, so users must pay out-of-pocket, at a <a href="https://www.migraine.org.au/cgrp#:%7E:text=While%20the%20price%20of%20Nurtec,%2D%24300%20per%208%20wafers.">cost</a> of approximately A$300 for eight wafers.</p> <h2>What about preventing migraines?</h2> <p>The first step is to see if <a href="https://assets.nationbuilder.com/migraineaus/pages/595/attachments/original/1677043428/Factsheet_5_2023.pdf?1677043428">lifestyle changes</a> can reduce migraine frequency. This can include improving sleep habits, routine meal schedules, regular exercise, limiting caffeine intake and avoiding triggers such as stress or alcohol.</p> <p>Despite these efforts, many people continue to have frequent migraines that can’t be managed by acute therapies alone. The choice of when to start preventive treatment varies for each person and how inclined they are to taking regular medication. Those who suffer disabling symptoms or experience more than a few migraines a month <a href="https://www.nejm.org/doi/full/10.1056/NEJMra1915327">benefit the most</a> from starting preventives.</p> <p>Almost all migraine <a href="https://assets.nationbuilder.com/migraineaus/pages/595/attachments/original/1708566656/Factsheet_16_2024.pdf?1708566656">preventives</a> have existing roles in treating other medical conditions, and the physician would commonly recommend drugs that can also help manage any pre-existing conditions. First-line preventives include:</p> <ul> <li>tablets that lower blood pressure (candesartan, metoprolol, propranolol)</li> <li>antidepressants (amitriptyline, venlafaxine)</li> <li>anticonvulsants (sodium valproate, topiramate).</li> </ul> <p>Some people have none of these other conditions and can safely start medications for migraine prophylaxis alone.</p> <p>For all migraine preventives, a key principle is starting at a low dose and increasing gradually. This approach makes them more tolerable and it’s often several weeks or months until an effective dose (usually 2- to 3-times the starting dose) is reached.</p> <p>It is rare for noticeable benefits to be seen immediately, but with time these drugs <a href="https://pubmed.ncbi.nlm.nih.gov/26252585/">typically reduce</a> migraine frequency by 50% or more.</p> <hr /> <p><iframe id="jxajY" class="tc-infographic-datawrapper" style="border: 0;" src="https://datawrapper.dwcdn.net/jxajY/" width="100%" height="400px" frameborder="0" scrolling="no"></iframe></p> <hr /> <h2>‘Nothing works for me!’</h2> <p>In people who didn’t see any effect of (or couldn’t tolerate) first-line preventives, new medications have been available on the PBS since 2020. These medications <a href="https://pubmed.ncbi.nlm.nih.gov/8388188/">block</a> the action of CGRP.</p> <p>The most common PBS-listed <a href="https://assets.nationbuilder.com/migraineaus/pages/595/attachments/original/1708566656/Factsheet_16_2024.pdf?1708566656">anti-CGRP medications</a> are injectable proteins called monoclonal antibodies (for example, galcanezumab and fremanezumab), and are self-administered by monthly injections.</p> <p>These drugs have quickly become a game-changer for those with intractable migraines. The convenience of these injectables contrast with botulinum toxin injections (also <a href="https://www.migraine.org.au/botox">effective</a> and PBS-listed for chronic migraine) which must be administered by a trained specialist.</p> <p>Up to half of adolescents and one-third of young adults are <a href="https://deepblue.lib.umich.edu/bitstream/handle/2027.42/147205/jan13818.pdf">needle-phobic</a>. If this includes you, tablet-form CGRP antagonists for migraine prevention are hopefully not far away.</p> <p>Data over the past five years <a href="https://pubmed.ncbi.nlm.nih.gov/36718044/">suggest</a> anti-CGRP medications are safe, effective and at least as well tolerated as traditional preventives.</p> <p>Nonetheless, these are used only after a number of cheaper and more readily available <a href="https://assets.nationbuilder.com/migraineaus/pages/595/attachments/original/1677043425/Factsheet_2_2023.pdf?1677043425">first-line treatments</a> (all which have decades of safety data) have failed, and this also a criterion for their use under the PBS.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/227559/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/mark-slee-1343982">Mark Slee</a>, Associate Professor, Clinical Academic Neurologist, <a href="https://theconversation.com/institutions/flinders-university-972">Flinders University</a> and <a href="https://theconversation.com/profiles/anthony-khoo-1525617">Anthony Khoo</a>, Lecturer, <a href="https://theconversation.com/institutions/flinders-university-972">Flinders University</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/what-happens-in-my-brain-when-i-get-a-migraine-and-what-medications-can-i-use-to-treat-it-227559">original article</a>.</em></p> </div>

Body

Placeholder Content Image

Second marriage asset protection: What you need to know

<p>Of paramount importance for many people in a second marriage is how to protect their assets if their relationship breaks down, or in the event of their death. Although second marriages bring a level of complexity, there are a number of strategies that you can implement to ensure that your assets are protected.</p> <p>Let’s explore some of the options available to you and what you need to know to protect your assets.</p> <p><strong>Binding Financial Agreement</strong></p> <p>A Binding Financial Agreement, often referred to as a pre-nup, allows you and your spouse to put in place a legal agreement which outlines how your assets will be dealt with in the event that your relationship breaks down. Should you wish, it can also extend to the provision of financial support for either party. The intention is for each party to protect their own assets, and such agreements can be put in place prior to a marriage or during a marriage if both parties consent.</p> <p>Like any legal document, a Binding Financial Agreement needs to be well drafted to ensure that it encompasses all relevant information, and it is important that you seek the advice of a family lawyer to assist you with putting this important document in place.</p> <p><strong>Joint Assets v Individual Assets</strong></p> <p>The manner in which you hold your assets is of paramount importance. All joint assets pass to the surviving party. If you and your spouse own a property as joint proprietors upon your death this property will automatically pass to your spouse. By changing the manner in which you hold the property from joint proprietors to tenants in common allows you and your spouse to deal with your individual interest in the property in your respective Wills.</p> <p>Additionally, you need to be mindful of any bank accounts or other investments that you hold jointly with your spouse as these are not individual assets that you can make provision for and will pass to your spouse upon your death.</p> <p><strong>Your Will</strong></p> <p>It is imperative that you put a Will in place that is reflective of your current circumstances and adequately provides for both your spouse and your children from a previous relationship in the manner that you desire. For many parents in second marriages with children from a previous relationship, protecting their children’s inheritance is of paramount importance.</p> <p>Discretionary Testamentary Trusts which are created in accordance with the provisions of your Will, can make provision for your spouse during their lifetime, whilst also ensuring that most of your assets go to your children. </p> <p>If you are the sole registered proprietor of your residence in which you and your spouse reside you may make provision in your Will providing a life interest in your residence to your spouse subject to some conditions being adhered to. This will allow your spouse to reside in your residence for the duration of their life then subsequent to their death the property may then pass to your children.</p> <p>Dying without a valid Will in place deems that you died intestate, and your assets will be distributed in accordance with a government formula and may not end up with the people who you would like to receive them. Your spouse would be entitled to a share of your assets, however this may not have been your intention, or the share that they would receive may be significantly more than you would like them to receive.</p> <p>It is therefore crucial that you take the time to put a well drafted Will in place so that your assets pass to those who you would like to receive them upon your death.</p> <p><strong>Mutual Wills Agreement</strong></p> <p>A Mutual Wills Agreement is a separate document to your Will and essentially is an agreement between you and your spouse that both of you will not change your Will without the consent of the your spouse or their legal personal representative upon their death. </p> <p>This document is intended to prevent the remaining spouse from altering their Will and disinheriting step-children or making other adverse changes to their Will.</p> <p><strong>The Right People in Key Roles</strong></p> <p>The roles of executor of your Will and your attorney in respect to your Power of Attorney documents are important roles and it is paramount that you appoint trusted people to undertake these roles as essentially you are handing control of your assets to those who assume these roles.</p> <p>Your attorney is entrusted to look after your finances and provide the best care for you in the event that you become incapacitated so you need to choose wisely.</p> <p><strong>Communication is Crucial</strong></p> <p>It is important that there is transparency for you and your family. By having important conversations with your spouse and children you can openly discuss your intentions and expectations so that all parties are relevantly informed and fully understand what your wishes are and what you have put in place. </p> <p>In order to evaluate the best options for you it is important that you obtain the appropriate professional advice to determine which is the best strategy for your own individual circumstances so that the relevant documents are put in place which offer you the best asset protection possible.</p> <p><em><strong>Melisa Sloan is principal of Madison Sloan Lawyers and author of Big Moments: Expert Advice for Conquering those moments that define us. www.melisasloan.com.au</strong></em></p> <p><em>Image credits: Shutterstock </em></p>

Money & Banking

Placeholder Content Image

Think you’ve decided what to buy? Actually, your brain is still deciding – even as you put it in your basket

<div class="theconversation-article-body"> <p><em><a href="https://theconversation.com/profiles/tijl-grootswagers-954175">Tijl Grootswagers</a>, <a href="https://theconversation.com/institutions/western-sydney-university-1092">Western Sydney University</a>; <a href="https://theconversation.com/profiles/genevieve-l-quek-1447582">Genevieve L Quek</a>, <a href="https://theconversation.com/institutions/western-sydney-university-1092">Western Sydney University</a>, and <a href="https://theconversation.com/profiles/manuel-varlet-156210">Manuel Varlet</a>, <a href="https://theconversation.com/institutions/western-sydney-university-1092">Western Sydney University</a></em></p> <p>You are standing in the cereal aisle, weighing up whether to buy a healthy bran or a sugary chocolate-flavoured alternative.</p> <p>Your hand hovers momentarily before you make the final grab.</p> <p>But did you know that during those last few seconds, while you’re reaching out, your brain is still evaluating the pros and cons – influenced by everything from your last meal, the health star rating, the catchy jingle in the ad, and the colours of the letters on the box?</p> <p>Our recently published <a href="https://www.nature.com/articles/s41598-024-62135-7">research</a> shows our brains do not just think first and then act. Even while you are reaching for a product on a supermarket shelf, your brain is still evaluating whether you are making the right choice.</p> <p>Further, we found measuring hand movements offers an accurate window into the brain’s ongoing evaluation of the decision – you don’t have to hook people up to expensive brain scanners.</p> <p>What does this say about our decision-making? And what does it mean for consumers and the people marketing to them?</p> <h2>What hand movements tell us about decision-making</h2> <p>There has been <a href="https://www.annualreviews.org/content/journals/10.1146/annurev-psych-010419-051053">debate within neuroscience</a> on whether a person’s movements to enact a decision can be modified once the brain’s “motor plan” has been made.</p> <p>Our research revealed not only that movements can be changed after a decision – “in flight” – but also the changes matched incoming information from a person’s senses.</p> <p>To study <a href="https://doi.org/10.1038/s41598-024-62135-7">how our decisions unfold over time</a>, we tracked people’s hand movements as they reached for different options shown in pictures – for example, in response to the question “is this picture a face or an object?”</p> <p>When choices were easy, their hands moved straight to the right option. But when choices were harder, new information made the brain change its mind, and this was reflected in the trajectory of their hand movements.</p> <p>When we compared these hand movement trajectories to brain activity recorded using neuroimaging, we found that the timing and amount of evidence of the brain’s evaluation matched the movement pattern.</p> <p>Put simply, reaching movements are shaped by ongoing thinking and decision-making.</p> <p>By showing that brain patterns match movement trajectories, our research also highlights that large, expensive brain scanners may not always be required to study the brain’s decision evaluation processes, as movement tracking is much more cost-effective and much easier to test on a large scale.</p> <h2>What does this mean for consumers and marketers?</h2> <p>For consumers, knowing our brains are always reevaluating decisions we might think of as “final” can help us be more aware of our choices.</p> <p>For simple decisions such as choosing a breakfast cereal, the impact may be small. Even if you have preemptively decided on a healthy option, you might be tempted at the last minute by the flashy packaging of a less healthy choice.</p> <p>But for important long-term decisions such as choosing a mortgage, it can have serious effects.</p> <p>On the other side of the coin, marketers have long known that many purchase decisions are <a href="https://www.sciencedirect.com/science/article/pii/S0969698912000781">made on the spot</a>.</p> <p>They use strategies such as attractive packaging and strategic product placement to influence people’s decisions.</p> <p>New ways of studying how people’s brains process information – right up to the last minute – can help marketers design more effective strategies.</p> <h2>Opportunities for further research</h2> <p>Further research in this area could explore how different types of information, such as environmental cues or memories, affect this continuous decision evaluation process in different groups of people. For example, how do people of different ages process information while making decisions?</p> <p>Our finding – that hand movements reflect the inner workings of the brain’s decision making process – could make future studies cheaper and more efficient.</p> <p>The ability to fine-tune marketing in this way has implications beyond just selling products. It can also make public strategic messaging far more effective.</p> <p>This could include tailoring a public health campaign on vaping specifically for people aged under 30, or targeting messaging about superannuation scams more effectively at those of retirement age.</p> <p>The act of reaching for a product is not a simple consequence of a decision already made; it’s a highly dynamic process. Being aware of what influences our last-minute decision-making can help us make better choices that have better outcomes.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/234167/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/tijl-grootswagers-954175">Tijl Grootswagers</a>, Senior Research Fellow in Cognitive Neuroscience, <a href="https://theconversation.com/institutions/western-sydney-university-1092">Western Sydney University</a>; <a href="https://theconversation.com/profiles/genevieve-l-quek-1447582">Genevieve L Quek</a>, Research Fellow, <a href="https://theconversation.com/institutions/western-sydney-university-1092">Western Sydney University</a>, and <a href="https://theconversation.com/profiles/manuel-varlet-156210">Manuel Varlet</a>, Associate Professor in Cognitive Neuroscience, <a href="https://theconversation.com/institutions/western-sydney-university-1092">Western Sydney University</a></em></p> <p><em>Image credits: Shutterstock </em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/think-youve-decided-what-to-buy-actually-your-brain-is-still-deciding-even-as-you-put-it-in-your-basket-234167">original article</a>.</em></p> </div>

Mind

Placeholder Content Image

AFL great's son in induced coma after mystery brain infection

<p>Geelong great Peter Riccardi has revealed his son, Osca, was briefly put on life support after suffering a mystery infection on the brain. </p> <p>Speaking on the podcast Beyond The Boundary, the former AFL player revealed that his son became suddenly ill a fortnight ago. </p> <p>“A couple of Sundays ago (Osca) came home, been out with a few of his mates, he’d been to the beach, went out for dinner, went out to play 10-pin bowling ... and said he was going to bed,” Peter Riccardi said. </p> <p>“Then halfway through the night he was up, he was vomiting, he was feeling a bit crook ... we just thought he was run down.</p> <p>“But come lunchtime, he couldn’t talk, he could hardly walk.”</p> <p>He added that they were extremely lucky his wife Mel worked from home that day and rushed Osca straight to hospital, where they found some "swelling" on his brain following a scan. </p> <p>Doctors also found that he had a sinus and ear infection and glandular fever  all “rolled into one”.</p> <p>“Whether the swim did something with his ears and went into his brain, I’m not 100 per cent sure, yet,” Riccardi said.</p> <p>“They put him an induced coma for three days. He was in ICU (Intensive Care Unit) for four days.</p> <p>“But he’s back home now recovering ... you wouldn’t know that two weeks ago, watching him on life support, and seeing him now, it’s amazing what they do in there.”</p> <p>The podcast hosts then asked how scary the situation was for Riccardi and his wife, and he responded: “It was, yeah ... obviously they have got to prepare you for the worst (outcome)."</p> <p>“That was probably the worst thing to hear, because we didn’t know how he was going to come out of it.</p> <p>“But again, like I said, if Mel had gone to work that day, he wouldn’t be here today.</p> <p>“We’re pretty lucky, we’re pretty lucky.</p> <p>“It must have been a mother’s intuition or mother’s instinct to stay at home that day.”</p> <p><em>Image: Facebook/ Geelong Cats</em></p>

Caring

Placeholder Content Image

After 180 years, new clues are revealing just how general anaesthesia works in the brain

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/adam-d-hines-767066">Adam D Hines</a>, <a href="https://theconversation.com/institutions/queensland-university-of-technology-847">Queensland University of Technology</a></em></p> <p><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773932/pdf/BLT.15.159293.pdf/">Over 350 million surgeries</a> are performed globally each year. For most of us, it’s likely at some point in our lives we’ll have to undergo a procedure that needs general anaesthesia.</p> <p>Even though it is one of the safest medical practices, we still don’t have a complete, thorough understanding of precisely how anaesthetic drugs work in the brain.</p> <p>In fact, it has largely remained a mystery since general anaesthesia was introduced into medicine over <a href="https://www.tandfonline.com/doi/full/10.3109/08941939.2015.1061826">180 years ago</a>.</p> <p>Our study published <a href="https://doi.org/10.1523/JNEUROSCI.0588-23.2024">in The Journal of Neuroscience today</a> provides new clues on the intricacies of the process. General anaesthetic drugs seem to only affect specific parts of the brain responsible for keeping us alert and awake.</p> <h2>Brain cells striking a balance</h2> <p>In a study using fruit flies, we found a potential way that allows anaesthetic drugs to interact with specific types of neurons (brain cells), and it’s all to do with proteins. Your brain has around <a href="https://onlinelibrary.wiley.com/doi/10.1002/cne.21974">86 billion neurons</a> and not all of them are the same – it’s these differences that allow general anaesthesia to be effective.</p> <p>To be clear, we’re not completely in the dark on <a href="https://linkinghub.elsevier.com/retrieve/pii/S0165614719300951">how anaesthetic drugs affect us</a>. We know why general anaesthetics are able to make us lose consciousness so quickly, thanks to a <a href="https://www.nature.com/articles/367607a0">landmark discovery made in 1994</a>.</p> <p>But to better understand the fine details, we first have to look to the minute differences between the cells in our brains.</p> <p>Broadly speaking, there are <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591655/">two main categories of neurons in the brain</a>.</p> <p>The first are what we call “excitatory” neurons, generally responsible for keeping us alert and awake. The second are “inhibitory” neurons – their job is to regulate and control the excitatory ones.</p> <p>In our day-to-day lives, excitatory and inhibitory neurons are constantly working and balancing one another.</p> <p><a href="https://www.nature.com/articles/npp2017294">When we fall asleep</a>, there are inhibitory neurons in the brain that “silence” the excitatory ones keeping us awake. This happens <a href="https://askdruniverse.wsu.edu/2018/01/07/why-do-we-get-tired/">gradually over time</a>, which is why you may feel progressively more tired through the day.</p> <p>General anaesthetics speed up this process by directly silencing these excitatory neurons without any action from the inhibitory ones. This is why your anaesthetist will tell you that they’ll “put you to sleep” for the procedure: <a href="https://www.nature.com/articles/nrn2372">it’s essentially the same process</a>.</p> <h2>A special kind of sleep</h2> <p>While we know why anaesthetics put us to sleep, the question then becomes: “why do we <em>stay</em> asleep during surgery?”. If you went to bed tonight, fell asleep and somebody tried to do surgery on you, you’d wake up with quite a shock.</p> <p>To date, there is no strong consensus in the field as to why general anaesthesia causes people to remain unconscious during surgery.</p> <p>Over the last couple of decades, researchers have proposed several potential explanations, but they all seem to point to one root cause. <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709148/#:%7E:text=At%20presynaptic%20part%2C%20voltage%2Dgated,anesthetics%20to%20inhibiting%20neurotransmitter%20release.">Neurons stop talking to each other</a> when exposed to general anaesthetics.</p> <p>While the idea of “cells talking to each other” may sound a little strange, it’s a <a href="https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-potentials-and-synapses">fundamental concept in neuroscience</a>. Without this communication, our brains wouldn’t be able to function at all. And it allows the brain to know what’s happening throughout the body.</p> <figure class="align-center zoomable"><a href="https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip"><img src="https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" sizes="(min-width: 1466px) 754px, (max-width: 599px) 100vw, (min-width: 600px) 600px, 237px" srcset="https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=600&amp;h=600&amp;fit=crop&amp;dpr=1 600w, https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=600&amp;h=600&amp;fit=crop&amp;dpr=2 1200w, https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=600&amp;h=600&amp;fit=crop&amp;dpr=3 1800w, https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;h=754&amp;fit=crop&amp;dpr=1 754w, https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=30&amp;auto=format&amp;w=754&amp;h=754&amp;fit=crop&amp;dpr=2 1508w, https://images.theconversation.com/files/593888/original/file-20240514-16-5fletd.png?ixlib=rb-4.1.0&amp;q=15&amp;auto=format&amp;w=754&amp;h=754&amp;fit=crop&amp;dpr=3 2262w" alt="Two branching structures in orange, green, blue and yellow colours on a black background." /></a><figcaption><span class="caption">Colourised neurons in the brain of a fly.</span> <span class="attribution"><span class="source">Adam Hines</span></span></figcaption></figure> <h2>What did we discover?</h2> <p>Our new study shows that general anaesthetics appear to stop excitatory neurons from communicating, but not inhibitory ones. <a href="https://www.jneurosci.org/content/40/21/4103">This concept isn’t new</a>, but we found some compelling evidence as to <em>why</em> only excitatory neurons are affected.</p> <p>For neurons to communicate, proteins have to get involved. One of the jobs these proteins have is to get neurons to release molecules called <a href="https://my.clevelandclinic.org/health/articles/22513-neurotransmitters">neurotransmitters</a>. These chemical messengers are what gets signals across from one neuron to another: dopamine, adrenaline and serotonin are all neurotransmitters, for example.</p> <p>We found that general anaesthetics impair the ability of these proteins to release neurotransmitters, but only in excitatory neurons. To test this, we used <a href="https://www.eneuro.org/content/8/3/ENEURO.0057-21.2021"><em>Drosophila melanogaster</em> fruit flies</a> and <a href="https://imb.uq.edu.au/research/facilities/microscopy/training-manuals/microscopy-online-resources/image-capture/super-resolution-microscopy">super resolution microscopy</a> to directly see what effects a general anaesthetic was having on these proteins at a molecular scale.</p> <p>Part of what makes excitatory and inhibitory neurons different from each other is that they <a href="https://journals.physiology.org/doi/full/10.1152/physrev.00007.2012">express different types of the same protein</a>. This is kind of like having two cars of the same make and model, but one is green and has a sports package, while the other is just standard and red. They both do the same thing, but one’s just a little bit different.</p> <p>Neurotransmitter release is a complex process involving lots of different proteins. If one piece of the puzzle isn’t exactly right, then general anaesthetics won’t be able to do their job.</p> <p>As a next research step, we will need to figure out which piece of the puzzle is different, to understand why general anaesthetics only stop excitatory communication.</p> <p>Ultimately, our results hint that the drugs used in general anaesthetics cause massive global inhibition in the brain. By silencing excitability in two ways, these drugs put us to sleep and keep it that way.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/229713/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/adam-d-hines-767066">Adam D Hines</a>, Research fellow, <a href="https://theconversation.com/institutions/queensland-university-of-technology-847">Queensland University of Technology</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/after-180-years-new-clues-are-revealing-just-how-general-anaesthesia-works-in-the-brain-229713">original article</a>.</em></p> </div>

Body

Placeholder Content Image

“My darling wife": Newlywed's tragic death overseas

<p>Madison Noronha (née Chatham) was in Amsterdam with her husband Kyle Noronha after only a few weeks of getting married when she suddenly collapsed on the street. </p> <p>When she was rushed to hospital last week, scans revealed that she had suffered a brain aneurysm and despite getting immediate surgery to relieve the pressure, she unfortunately <span style="font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;">could</span><span style="font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;"> not be saved. </span></p> <p>“Madi fought like she always does right to the very end,” her heartbroken husband wrote on social media. </p> <p>She passed away in his arms and was surrounded by loved ones. </p> <p>“My darling wife I cannot comprehend what has happened, I’m in a million pieces. Forever and always babe.”</p> <p>Now, her family have set up a <a href="https://www.gofundme.com/f/madison-noronha-chatham" target="_blank" rel="noopener">GoFundMe</a> in attempt to raise funds to “help with flights, funeral costs and to help bring our beloved Madison home to be laid to rest”.</p> <p>Since the launch of the fundraiser, people have come together and raised over $30,000 for the family. </p> <p>Taylah Wicks, the organiser of the fundraiser and a family friend, said that Madison was loved and cherished beyond measure”.</p> <p>“We are all left heart broken, but can’t imagine the pain that Kyle and her immediate family are experiencing,” she wrote on the page.</p> <p><em>Image: GoFundMe</em></p>

Travel Trouble

Placeholder Content Image

Kick up your heels – ballroom dancing offers benefits to the aging brain and could help stave off dementia

<div class="theconversation-article-body"><em><a href="https://theconversation.com/profiles/helena-blumen-1231899">Helena Blumen</a>, <a href="https://theconversation.com/institutions/albert-einstein-college-of-medicine-3638">Albert Einstein College of Medicine</a></em></p> <h2>The big idea</h2> <p>Social ballroom dancing can improve cognitive functions and reduce brain atrophy in older adults who are at increased risk for Alzheimer’s disease and other forms of dementia. That’s the key finding of my team’s <a href="https://doi.org/10.1123/japa.2022-0176">recently published study</a> in the Journal of Aging and Physical Activity.</p> <p>In our study, we enrolled 25 adults over 65 years of age in either six months of twice-weekly ballroom dancing classes or six months of twice-weekly treadmill walking classes. None of them were engaged in formal dancing or other exercise programs.</p> <p>The overall goal was to see how each experience affected cognitive function and brain health.</p> <p>While none of the study volunteers had a dementia diagnosis, all performed a bit lower than expected on at least one of our dementia screening tests. We found that older adults that completed six months of social dancing and those that completed six months of treadmill walking improved their executive functioning – an umbrella term for planning, reasoning and processing tasks that require attention.</p> <p>Dancing, however, generated significantly greater improvements than treadmill walking on one measure of executive function and on processing speed, which is the time it takes to respond to or process information. Compared with walking, dancing was also associated with reduced brain atrophy in the hippocampus – a brain region that is key to memory functioning and is particularly affected by Alzheimer’s disease. Researchers also know that this part of our brain can undergo neurogenesis – or grow new neurons – <a href="https://doi.org/10.1073/pnas.0611721104">in response to aerobic exercise</a>.</p> <figure><iframe src="https://www.youtube.com/embed/unmbhUvnGow?wmode=transparent&amp;start=0" width="440" height="260" frameborder="0" allowfullscreen="allowfullscreen"></iframe><figcaption><span class="caption">Research shows those who regularly dance with a partner have a more positive outlook on life.</span></figcaption></figure> <p>While several previous studies suggest that dancing has beneficial effects <a href="https://doi.org/10.1093/ageing/afaa270">on cognitive function in older adults</a>, only a few studies have compared it directly with traditional exercises. Our study is the first to observe both better cognitive function and improved brain health following dancing than walking in older adults at risk for dementia. We think that social dancing may be more beneficial than walking because it is physically, socially and cognitively demanding – and therefore strengthens a wide network of brain regions.</p> <p>While dancing, you’re not only using brain regions that are important for physical movement. You’re also relying on brain regions that are important for interacting and adapting to the movements of your dancing partner, as well as those necessary for learning new dance steps or remembering those you’ve learned already.</p> <h2>Why it matters</h2> <p>Nearly 6 million older adults in the U.S. and 55 million worldwide <a href="https://doi.org/10.1016/j.jalz.2019.01.010">have Alzheimer’s disease</a> or a <a href="https://www.who.int/news-room/fact-sheets/detail/dementia">related dementia</a>, yet there is no cure. Sadly, the efficacy and ethics surrounding recently developed drug treatments <a href="https://doi.org/10.1080/21507740.2022.2129858">are still under debate</a>.</p> <p>The good news is that older adults can potentially <a href="https://doi.org/10.1016/S0140-6736(20)30367-6">lower their risk for dementia</a> through lifestyle interventions, even later in life. These include reducing social isolation and physical inactivity.</p> <p>Social ballroom dancing targets both isolation and inactivity. In these later stages of the COVID-19 pandemic, a better understanding of the <a href="https://doi.org/10.1177/23337214211005223">indirect effects of COVID-19</a> – particularly those that increase dementia risk, such as social isolation – is urgently needed. In my view, early intervention is critical to prevent dementia from becoming the next pandemic. Social dancing could be a particularly timely way to overcome the adverse cognitive and brain effects associated with isolation and fewer social interactions during the pandemic.</p> <h2>What still isn’t known</h2> <p>Traditional aerobic exercise interventions such as treadmill-walking or running have been shown to lead to modest but reliable improvements in cognition – <a href="https://doi.org/10.1177/1745691617707316">particularly in executive function</a>.</p> <p>My team’s study builds on that research and provides preliminary evidence that not all exercise is equal when it comes to brain health. Yet our sample size was quite small, and larger studies are needed to confirm these initial findings. Additional studies are also needed to determine the optimal length, frequency and intensity of dancing classes that may result in positive changes.</p> <p>Lifestyle interventions like social ballroom dancing are a promising, noninvasive and cost-effective path toward staving off dementia as we – eventually – leave the COVID-19 pandemic behind.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/194969/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><em><a href="https://theconversation.com/profiles/helena-blumen-1231899">Helena Blumen</a>, Associate Professor of Medicine and Neurology, <a href="https://theconversation.com/institutions/albert-einstein-college-of-medicine-3638">Albert Einstein College of Medicine</a></em></p> <p><em>Image credits: Shutterstock</em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/kick-up-your-heels-ballroom-dancing-offers-benefits-to-the-aging-brain-and-could-help-stave-off-dementia-194969">original article</a>.</em></p> </div>

Mind

Placeholder Content Image

Best-selling author diagnosed with "aggressive" brain cancer

<p>Best-selling author Sophie Kinsella has shared that she has been fighting "aggressive" brain cancer since the end of 2022. </p> <p>The British writer took to Instagram to reveal she was diagnosed with glioblastoma 18 months ago, and shared why she chose to keep the devatstsing news out of the spotlight. </p> <p>The 54-year-old said she wanted to "make sure my children were able to hear and process the news in privacy and adapt to our new normal" before going public with her diagnosis. </p> <p>"I have been under the care of the excellent team at University College Hospital in London and have had successful surgery and subsequent radiotherapy and chemotherapy, which is still ongoing," she told her followers on Instagram.</p> <p>"At the moment all is stable and I am feeling generally very well, though I get very tired and my memory is even worse than it was before!"</p> <p>Kinsella said she is "so grateful to my family and close friends who have been an incredible support to me, and to the wonderful doctors and nurses who have treated me."</p> <p>She also thanked her readers for their "constant support", adding how the reception of her latest novel <em>The Burnout</em>, released in October 2023, "really buoyed me up during a difficult time."</p> <p>She ended her statement by saying, "To everyone who is suffering from cancer in any form I send love and best wishes, as well as to those who support them."</p> <p>"It can feel very lonely and scary to have a tough diagnosis, and the support and care of those around you means more than words can say."</p> <p><em>Image credits: Getty Images </em></p>

Caring

Placeholder Content Image

Does intermittent fasting have benefits for our brain?

<p><a href="https://theconversation.com/profiles/hayley-oneill-1458016">Hayley O'Neill</a>, <em><a href="https://theconversation.com/institutions/bond-university-863">Bond University</a></em></p> <p>Intermittent fasting has become a popular dietary approach to help people lose or manage their <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8683964/">weight</a>. It has also been promoted as a way to reset metabolism, control chronic disease, slow ageing and <a href="https://pubmed.ncbi.nlm.nih.gov/27810402">improve overall health</a>.</p> <p>Meanwhile, some research suggests intermittent fasting may offer a different way for the brain to access energy and provide protection against neurodegenerative diseases like <a href="https://link.springer.com/article/10.1007/s11011-023-01288-2">Alzheimer’s disease</a>.</p> <p>This is not a new idea – the ancient Greeks believed fasting <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839325/">enhanced thinking</a>. But what does the modern-day evidence say?</p> <h2>First, what is intermittent fasting?</h2> <p>Our <a href="https://pubmed.ncbi.nlm.nih.gov/35487190/">diets</a> – including calories consumed, macronutrient composition (the ratios of fats, protein and carbohydrates we eat) and when meals are consumed – are factors in our lifestyle we can change. People do this for cultural reasons, desired weight loss or potential health gains.</p> <p>Intermittent fasting consists of short periods of calorie (energy) restriction where food intake is limited for 12 to 48 hours (usually 12 to 16 hours per day), followed by periods of normal food intake. The intermittent component means a re-occurrence of the pattern rather than a “one off” fast.</p> <p>Food deprivation beyond 24 hours typically constitutes starvation. This is distinct from fasting due to its specific and potentially harmful biochemical alterations and nutrient deficiencies if continued for long periods.</p> <h2>4 ways fasting works and how it might affect the brain</h2> <p>The brain accounts for about <a href="https://theconversation.com/how-much-energy-do-we-expend-thinking-and-using-our-brain-197990">20% of the body’s energy consumption</a>.</p> <p>Here are four ways intermittent fasting can act on the body which could help explain its potential effects on the brain.</p> <p><strong>1. Ketosis</strong></p> <p>The goal of many intermittent fasting routines is to flip a “<a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913738/">metabolic switch</a>” to go from burning predominately carbohydrates to burning fat. This is called ketosis and typically occurs after 12–16 hours of fasting, when liver and glycogen stores are depleted. <a href="https://www.ncbi.nlm.nih.gov/books/NBK493179/">Ketones</a> – chemicals produced by this metabolic process – become the preferred energy source for the brain.</p> <p>Due to this being a slower metabolic process to produce energy and potential for lowering blood sugar levels, ketosis can <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844723/">cause symptoms</a> of hunger, fatigue, nausea, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754590/">low mood</a>, irritability, constipation, headaches, and brain “fog”.</p> <p>At the same time, as glucose metabolism in the brain declines with ageing, studies have shown ketones could provide an alternative energy source to <a href="https://www.science.org/doi/10.1126/science.aau2095">preserve brain function</a> and prevent <a href="https://pubmed.ncbi.nlm.nih.gov/32709961/">age-related neurodegeneration disorders and cognitive decline</a>.</p> <p>Consistent with this, increasing ketones through <a href="https://pubmed.ncbi.nlm.nih.gov/31027873/">supplementation</a> or <a href="https://pubmed.ncbi.nlm.nih.gov/31757576/">diet</a> has been shown to improve cognition in adults with mild cognitive decline and those at risk of Alzheimer’s disease respectively.</p> <p><strong>2. Circadian syncing</strong></p> <p>Eating at times that <a href="https://pubmed.ncbi.nlm.nih.gov/32480126/">don’t match our body’s natural daily rhythms</a> can disrupt how our organs work. Studies in shift workers have suggested this might also make us more prone to <a href="https://pubmed.ncbi.nlm.nih.gov/22010477/">chronic disease</a>.</p> <p>Time-restricted eating is when you eat your meals within a six to ten-hour window during the day when you’re most active. Time-restricted eating causes changes in <a href="https://pubmed.ncbi.nlm.nih.gov/36599299/">expression of genes in tissue</a> and helps the body during rest and activity.</p> <p>A 2021 <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7827225/">study of 883 adults</a> in Italy indicated those who restricted their food intake to ten hours a day were less likely to have cognitive impairment compared to those eating without time restrictions.</p> <p><strong>3. Mitochondria</strong></p> <p>Intermittent fasting may provide <a href="https://pubmed.ncbi.nlm.nih.gov/35218914/">brain protection</a> through improving mitochondrial function, metabolism and reducing oxidants.</p> <p>Mitochondria’s <a href="https://www.genome.gov/genetics-glossary/Mitochondria">main role is to produce energy</a> and they are crucial to brain health. Many age-related diseases are closely related to an energy supply and demand imbalance, likely attributed to <a href="https://www.nature.com/articles/s41574-021-00626-7">mitochondrial dysfunction during ageing</a>.</p> <p>Rodent studies suggest alternate day fasting or reducing calories <a href="https://journals.sagepub.com/doi/10.1038/jcbfm.2014.114">by up to 40%</a> might protect or improve <a href="http://www.ncbi.nlm.nih.gov/pubmed/21861096">brain mitochondrial function</a>. But not all studies support this theory.</p> <p><strong>4. The gut-brain axis</strong></p> <p>The <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469458/">gut and the brain communicate with each other</a> via the body’s nervous systems. The brain can influence how the gut feels (think about how you get “butterflies” in your tummy when nervous) and the gut can affect mood, cognition and mental health.</p> <p>In mice, intermittent fasting has shown promise for <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5913738/">improving brain health</a> by increasing survival and <a href="https://pubmed.ncbi.nlm.nih.gov/12354284/">formation of neurons</a> (nerve cells) in the hippocampus brain region, which is involved in memory, learning and emotion.</p> <p>There’s <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470960/">no clear evidence</a> on the effects of intermittent fasting on cognition in healthy adults. However one 2022 study interviewed 411 older adults and found <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646955/">lower meal frequency</a> (less than three meals a day) was associated with reduced evidence of Alzheimer’s disease on brain imaging.</p> <p>Some research has suggested calorie restriction may have a protective effect against <a href="https://academic.oup.com/nutritionreviews/article/81/9/1225/7116310">Alzheimer’s disease</a> by reducing oxidative stress and inflammation and promoting vascular health.</p> <p>When we look at the effects of overall energy restriction (rather than intermittent fasting specifically) the evidence is mixed. Among people with mild cognitive impairment, one study showed <a href="https://pubmed.ncbi.nlm.nih.gov/26713821/">cognitive improvement</a> when participants followed a calorie restricted diet for 12 months.</p> <p>Another study found a 25% calorie restriction was associated with <a href="https://pubmed.ncbi.nlm.nih.gov/30968820">slightly improved working memory</a> in healthy adults. But a <a href="https://www.sciencedirect.com/science/article/pii/S0022316623025221?via%3Dihub">recent study</a>, which looked at the impact of calorie restriction on spatial working memory, found no significant effect.</p> <h2>Bottom line</h2> <p>Studies in <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740746/">mice</a> support a role for intermittent fasting in improving brain health and ageing, but few studies in humans exist, and the evidence we have is mixed.</p> <p>Rapid weight loss associated with calorie restriction and intermittent fasting can lead to nutrient deficiencies, muscle loss, and decreased immune function, particularly in <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8749464/">older adults</a> whose nutritional needs may be higher.</p> <p>Further, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6314618/">prolonged fasting</a> or <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9042193/">severe calorie restriction</a> may pose risks such as fatigue, dizziness, and electrolyte imbalances, which could exacerbate existing health conditions.</p> <p>If you’re considering <a href="https://www.nejm.org/doi/10.1056/NEJMra1905136?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed">intermittent fasting</a>, it’s best to seek advice from a health professional such as a dietitian who can provide guidance on structuring fasting periods, meal timing, and nutrient intake. This ensures intermittent fasting is approached in a safe, sustainable way, tailored to individual needs and goals.<!-- Below is The Conversation's page counter tag. Please DO NOT REMOVE. --><img style="border: none !important; box-shadow: none !important; margin: 0 !important; max-height: 1px !important; max-width: 1px !important; min-height: 1px !important; min-width: 1px !important; opacity: 0 !important; outline: none !important; padding: 0 !important;" src="https://counter.theconversation.com/content/223181/count.gif?distributor=republish-lightbox-basic" alt="The Conversation" width="1" height="1" /><!-- End of code. If you don't see any code above, please get new code from the Advanced tab after you click the republish button. The page counter does not collect any personal data. More info: https://theconversation.com/republishing-guidelines --></p> <p><a href="https://theconversation.com/profiles/hayley-oneill-1458016">Hayley O'Neill</a>, Assistant Professor, Faculty of Health Sciences and Medicine, <em><a href="https://theconversation.com/institutions/bond-university-863">Bond University</a></em></p> <p><em>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a href="https://theconversation.com/does-intermittent-fasting-have-benefits-for-our-brain-223181">original article</a>.</em></p> <p><em>Image: Getty </em></p>

Body

Placeholder Content Image

Driver fined over "six-second stop"

<p>A driver has been fined $387 for making "six-second stop" at what he thought was a 15-minute parking zone, and now he is fuming as he believes he is a victim of a cash grab.</p> <p>Sydney resident Michael was dropping off his partner in a quiet street on Darling Harbour and was shocked to receive a hefty fine and two demerit points for his quick drop-off. </p> <p>Revenue NSW reportedly told him that he had stopped within 10 metres after a crossing, which was a "serious" safety risk. </p> <p>Michael said that he was unaware he needed to pull in and believed he was allowed to stop where he did, as he was adjacent to the parking bay. </p> <p>"It's a flawed set up with the crossing being so close to the 15-minute parking," Michael told <em>Yahoo News Australia</em>.</p> <p>"If I was a metre over in the vacant bay I would have avoided the fine. But the signage is just not clear.. and that bay itself is within 10 metres of the crossing, so how does that work?"</p> <p>The photos supplied by Revenue NSW, all time-stamped 8:23am, showed Michael's vehicle in different positions of the Zollner Circuit, which he has argued is not sufficient evidence to prove that he stopped.</p> <p>The photos also showed no visible pedestrians, other than Michael's partner who had just gotten out of the car, and Michael argued that he was allowed to stop since there was the 15-minute parking sign. </p> <p>While Darling Harbour is located in the City of Sydney LGA, the area is managed by government-run Place Management NSW.</p> <p>"It is an offence to stop on or near a pedestrian crossing," a spokesperson stressed. </p> <p>Michael questioned why there was no leniency, with such a large fine particularly amid a cost-of-living crisis, but it is reportedly because those who clearly breach road laws would not be granted any. </p> <p>"There's no one around and I was there for six seconds... it just feels like someone was having a bad day and waiting to make a name for themselves," Michael argued.</p> <p><em>Images: Yahoo News Australia. </em></p>

Legal

Our Partners