Placeholder Content Image

A new vaccine called Novavax - with no mRNA - will be here soon

<p>Phase 3 clinic trials show a new vaccine called Novavax – or NVX-CoV2373 - is 90.4 percent effective and while it contains no mRNA, it's also protective against many of the new COVID variants.</p> <p>According to Infectious diseases physician and microbiologist, Associate Professor Paul Griffin, this means it’s likely to become “a very important part of our vaccination strategy moving forward.”</p> <p>Australia has ordered 51 million doses of Novavax and these could be here within three months or at the latest, by early 2022.</p> <p>The trial of the vaccine involved 29,960 participants spread across 119 sites in the US and Mexico. The results indicate the vaccine offers 100% protection against moderate and severe disease.</p> <p>Associate Professor Griffin - who was a Principal Investigator for Novavax’s <a rel="noopener" href="https://www.nejm.org/doi/full/10.1056/NEJMoa2026920" target="_blank">phase 1/2 study</a><br />in Australia – said these results suggest the vaccine could be rolled out in Australia within a few months or at the latest, by the start of next year.</p> <p>“This is a vaccine that we’re getting more and more data to support the fact that it’s safe and effective,” Associate Professor Griffin told <em>newsGP</em>.</p> <p>“Pending supply, I think it’s certainly a vaccine we should have by the end of the year, and maybe in as little as three months or so,” Associate Professor Griffin added.</p> <p><strong>Australia has ordered 51 million doses of the vaccine</strong></p> <p>Earlier this year, Novavax and the Australian Federal Government confirmed an advance purchase agreement for a total of 51 million doses of the vaccine. Novavax is now working with the Therapeutic Goods Administration (TGA) to secure the vaccine’s approval.</p> <p>According to Associate Professor Griffin, even considering recent orders placed with Moderna and Pfizer for more of their respective vaccines, the Novavax vaccine is still likely to play an important role, especially as it’s stable at 2–8°C.</p> <p>“It’s a very different type of vaccine to Moderna and Pfizer,” said Associate Professor Griffin. “Those mRNA vaccines do require to be frozen at quite cold temperatures so aren’t as easy to move around.</p> <p>“In a country like ours, particularly as we expand the roll-out to include more remote GP practices and even pharmacies, that makes Novavax ideally suited to those type of applications.”</p> <p><strong>25 million doses of Moderna confirmed as well</strong></p> <p>Last month the Federal Government confirmed an agreement with Moderna to supply 25 million doses of its COVID-19 vaccine, while 4.5 million additional Pfizer doses have already arrived in Australia.</p> <p>Associate Professor Griffin said he believes the Novavax vaccine is the one most likely to be used as a vaccine in its own right, rather than as a booster.<br /><br />“We would all like to think we would have enough people vaccinated by the time Novavax is available for it to be used as a booster, but I just don’t think we’re going to be there,” he said.<br /><br />“I think it will have a really important role to play in being the primary vaccine for a significant proportion of the country,” Associate Professor Griffin added.<br /><strong>Will the Delta strain have an impact on the vaccine’s efficacy?</strong></p> <p>Associate Professor Griffin said he’s not concerned about the impact of the Delta variant on the efficacy of the Novavax vaccine.</p> <p>“I think we have seen enough information from the other vaccines to suggest that while the efficacy is reduced, it still remains an efficacious vaccine,” he said.<br /><br />“We wouldn’t expect this to be any different so it will still provide protection against those variants,” he added.<br /><br />Associate Professor Griffin said further studies will help to give a clearer indication of how protective the vaccine is against evolving variants.</p> <p><strong>Vaccine was trialled extensively </strong></p> <p>The trial of the vaccine’s efficacy was carried out from 25 January through 30 April this year when the Alpha (B.1.1.7) variant – identified in the UK – was the predominant strain in the US.</p> <p>While the earlier phase 1/2 trial showed very promising antibody responses, the phase 3 trial was set up to establish how effective the vaccine is, as well as its safety and immunogenicity, in communities Novavax said had been the most affected by the disease.<br /><br />Data suggests the vaccine candidate is ‘well tolerated’, with adverse events ‘low in number and balanced between vaccine and placebo groups’, Novavax reported in its announcement.<br /><br />Tenderness in the area of the injection, described as generally mild-to-moderate, was cited as the most common symptom, lasting less than three days. Fatigue, headache and muscle pain featured as the common systemic symptoms, reported as lasting less than two days.<br /><br />Once wide-scale manufacturing begins, the vaccine is expected to come in a ready-to-use liquid format in 10-dose vials.<br /><br />As of yet, there is no deal in place to manufacture the vaccine on Australian soil, but Associate Professor Griffin said he is still hopeful that one might eventuate.<br /><br />“A lot of people are speculating [manufacturing in Australia] is a possibility,” he said. “It would be great to see as supply remains a significant restraint.”</p> <p><em>Image: Getty Images</em></p> <p> </p>

Caring

Placeholder Content Image

Can COVID vaccines affect my genetic code?

<p>The Pfizer and Moderna vaccines are set to become the mainstay of Australia’s COVID-19 vaccine rollout as the year progresses, according to the latest government projections <a href="https://www.abc.net.au/news/2021-06-23/gov-projects-little-need-for-astrazeneca-after-october-covid19/100239442">released this week</a>.</p> <p><a href="https://www.health.gov.au/sites/default/files/documents/2021/06/covid-19-vaccination-covid-vaccination-allocations-horizons.pdf">From September</a>, up to an average 1.3m doses of the Pfizer vaccine plus another 125,000 doses of the yet-to-be approved Moderna vaccine are expected to be available per week. These figures are set to rise from October, as use of the AstraZeneca vaccine drops.</p> <p>Both the Pfizer and Moderna vaccines are mRNA vaccines, which contain tiny fragments of the genetic material known as “messenger ribonucleic acid”. And if social media is anything to go by, <a href="https://twitter.com/AJ19803/status/1334476726022385666">some people</a> are concerned these vaccines can affect their genetic code.</p> <p>Here’s why the chances of that happening are next to zero and some pointers to how the myth came about.</p> <p><strong>Remind me, how do mRNA vaccines work?</strong></p> <p>The technology used in the Pfizer and Moderna vaccines is a way of giving your cells temporary instructions to make the <a href="https://theconversation.com/revealed-the-protein-spike-that-lets-the-2019-ncov-coronavirus-pierce-and-invade-human-cells-132183">coronavirus spike protein</a>. This protein is found on the surface of SARS-CoV-2, the virus that causes COVID-19. The vaccines teach your immune system to protect you if you ever encounter the virus.</p> <p>The mRNA in the vaccine is taken up by the cells in your body, ending up in the liquid inside each cell known as the cytoplasm. Our cells naturally make <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941114/">thousands of our own mRNAs</a> all the time (to code for a range of other proteins). So the vaccine mRNA is just another one. Once the vaccine mRNA is in the cytoplasm it’s used to make the SARS-CoV-2 spike protein.</p> <p>The vaccine mRNA is <a href="https://theconversation.com/what-is-mrna-the-messenger-molecule-thats-been-in-every-living-cell-for-billions-of-years-is-the-key-ingredient-in-some-covid-19-vaccines-158511">short-lived</a> and is rapidly broken down after it’s done its job, as happens with all your other mRNA.</p> <p><a rel="noopener" href="https://images.theconversation.com/files/408058/original/file-20210624-13-1w14e5y.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip" target="_blank"><img src="https://images.theconversation.com/files/408058/original/file-20210624-13-1w14e5y.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" alt="Typical mammalian cell, showing different parts, such as nucleus and cytoplasm" /></a></p> <p><span class="caption">Vaccine mRNA is in the cytoplasm and once it’s done its job, it’s broken down.</span> </p> <p><strong>Here’s why the mRNA can’t insert into your genetic code</strong></p> <p> </p> <p>Your genetic code is made up of a different, but related, molecule to the vaccine mRNA, known as DNA, or deoxyribonucleic acid. And mRNA can’t insert itself into your DNA for two reasons.</p> <p>One, both molecules have a different chemistry. If mRNAs could routinely insert themselves into your DNA at random, this would play havoc with how you produce proteins. It would also scramble your genome, which is passed on to future cells and generations. Life forms that do this would not survive. That’s why life has evolved for this <em>not</em> to happen.</p> <p>The second reason is vaccine mRNA and DNA are in two different parts of the cell. Our DNA stays in the nucleus. But vaccine mRNA goes straight to the cytoplasm, never entering the nucleus. There are no transporter molecules we know of that carry mRNA into the nucleus.</p> <p><strong>But aren’t there some exceptions?</strong></p> <p>There are some extremely rare exceptions. One is where genetic elements, known as <a href="https://www.nature.com/scitable/topicpage/transposons-the-jumping-genes-518/">retro-transposons</a>, hijack cellular mRNA, convert it into DNA and insert that DNA back into your genetic material.</p> <p>This has occurred sporadically <a href="https://www.nature.com/articles/nrg2640">throughout evolution</a>, producing some ancient copies of mRNAs scattered throughout our genome, to form so-called <a href="https://www.nature.com/articles/s41576-019-0196-1">pseudogenes</a>.</p> <p>Some <a href="https://www.genome.gov/genetics-glossary/Retrovirus">retroviruses</a>, such as HIV, also insert their RNA into our DNA, using similar methods to retro-transposons.</p> <p>However, there is a vanishingly small chance of a naturally occurring retro-transposon becoming active in a cell that has just received a mRNA vaccine. There’s also a vanishingly small chance of being infected with HIV at precisely the same time as receiving the mRNA vaccine.</p> <p><a href="https://images.theconversation.com/files/408059/original/file-20210624-29-gcexgw.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=1000&amp;fit=clip"><img src="https://images.theconversation.com/files/408059/original/file-20210624-29-gcexgw.jpg?ixlib=rb-1.1.0&amp;q=45&amp;auto=format&amp;w=754&amp;fit=clip" alt="Blood sample labelled with HIV - Test" /></a></p> <p><span class="caption">There’s a vanishingly small chance of being infected with HIV at precisely the same time as having an mRNA vaccine.</span> </p> <p>Even if a retro-transposon were to become active or a virus such as HIV were present, the chances of it finding the COVID vaccine mRNA, among the tens of thousands of natural mRNAs, is extremely unlikely. That’s because vaccine mRNA is degraded within <a href="https://pubmed.ncbi.nlm.nih.gov/18797453/">several hours</a> of entering the body.</p> <p>Even if vaccine mRNA did become a pseudogene, it would not produce the SARS-CoV-2 virus, but just one of the viral products, the harmless spike protein.</p> <p><strong>How do we actually know this?</strong></p> <p> </p> <p>We know of no studies looking for vaccine mRNA in the DNA of people who have been vaccinated. There is no scientific basis on which to suspect this insertion has happened.</p> <p>However, if these studies were to be carried out, they should be relatively straightforward. That’s because we can now <a href="https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-019-0314-y">sequence DNA in single cells</a>.</p> <p>But in reality, it will be very hard to ever satisfy a naysayer who is convinced this genome insertion happens; they can always argue scientists need to look deeper, harder, in different people and in different cells. At some point this argument will need to be laid to rest.</p> <p><strong>So how did this myth come about?</strong></p> <p><a href="https://doi.org/10.1073/pnas.2105968118">One study</a> reported evidence for coronavirus RNA integrating into the human genome in cells grown in the lab that had been infected with SARS-CoV-2.</p> <p>However, that paper did not look at the mRNA vaccine, lacked critical controls and <a href="https://www.biorxiv.org/content/10.1101/2021.03.05.434119v1">has</a> <a rel="noopener" href="https://doi.org/10.1128/JVI.00294-21" target="_blank">since been discredited</a>.</p> <p>These types of studies also need to be seen in context of the public’s wariness of genetic technology more broadly. This includes <a rel="noopener" href="https://www.nature.com/articles/nbt1099_941d" target="_blank">the public’s concerns</a> about genetically modified organisms (GMOs), for instance, over the past 20 years or so.</p> <p>But GMOs are different to the mRNA technology used to make COVID vaccines. Unlike GMOs, which are produced by inserting DNA into the genome, vaccine mRNA will not be in our genes or passed to the next generation. It’s broken down very quickly.</p> <p>In reality, mRNA technology has <a href="https://theconversation.com/3-mrna-vaccines-researchers-are-working-on-that-arent-covid-157858">all sorts of</a> <a href="https://www.wired.co.uk/article/mrna-vaccine-revolution-katalin-kariko">applications</a>, beyond vaccines, including biosecurity and sustainable agriculture. So it would be a pity for these efforts to be held back by misinformation.</p> <p> </p> <p><span><a href="https://theconversation.com/profiles/archa-fox-1153308">Archa Fox</a>, Associate Professor and ARC Future Fellow, <em><a href="https://theconversation.com/institutions/the-university-of-western-australia-1067">The University of Western Australia</a></em>; <a href="https://theconversation.com/profiles/jen-martin-17007">Jen Martin</a>, Leader, Science Communication Teaching Program, <em><a href="https://theconversation.com/institutions/the-university-of-melbourne-722">The University of Melbourne</a></em>, and <a href="https://theconversation.com/profiles/traude-beilharz-1240711">Traude Beilharz</a>, Assoc Professor ARC Future Fellow, Biochemistry &amp; Molecular Biology, Monash Biomedicine Discovery Institute, <em><a href="https://theconversation.com/institutions/monash-university-1065">Monash University</a></em></span></p> <p>This article is republished from <a href="https://theconversation.com">The Conversation</a> under a Creative Commons license. Read the <a rel="noopener" href="https://theconversation.com/can-the-pfizer-or-moderna-mrna-vaccines-affect-my-genetic-code-162590" target="_blank">original article</a>.</p>

Body

Our Partners